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Abstract. The electron Raman scattering in a two-band superconductor has been theoretically
investigated. The fluctuational effects, Coulomb interaction, and electron scattering by non-
magnetic impurities are taken into account. Two contributions to the light scattering intensity
are found: an additive contribution from two bands, and an inter-band term which exists for
arbitrary light polarization.

1. Introduction

The electronic Raman scattering in isotropic superconductors due to long-wavelength
oscillations of the electron density was considered for the first time by Abrikosov and
Falkovsky [1]. They showed that at zero temperature scattering is possible only if the
energy transferred to the electron system by the light exceeds the threshold frequency
ω = 21 (where1 is the superconducting energy gap). This is a consequence of the
absence of quasiparticle excitations atT = 0. Hence the only interaction of light with the
bulk material is the breaking of Cooper pairs.

If one takes into account collective oscillations [2, 3] due to coupled fluctuations of the
order parameter phase and electron density, then the oscillations of the latter are screened
out as pointed out in reference [4]. In this case the scattering is reduced while the threshold
frequency remains unchanged.

However, experimental data on light scattering in high-Tc superconductors indicate the
existence of electron states within the gap, and the dependence of the maximum of the
cross-section on the light polarization [5–8]. On the basis of this dependence, several
authors (see, for example, [9]) have made assumptions about the symmetry of the order
parameter. Additionally, the anisotropy of the order parameter explains the absence of a
clear threshold [9–12].

Sometimes the two-band model of superconductivity is applied to interpret the polar-
ization dependence [6]. The theory of this model was proposed long before the discovery
of HTSC [13, 14]. An interesting feature of two-band superconductors is the existence of
additional—comparing to the one-band model—collective oscillations, which correspond to
small fluctuations of the relative phase of the superconducting order parameters, and of the
difference of the electron densities of the two bands [15]. The system oscillates in such
a way that the total electron density at every spatial point of the superconductor remains
constant. The frequency of these oscillations,ω, is finite while the wave vector,k, tends
to zero, and can become less than the energy gaps of the superconductor. This can change
the threshold frequency of the Raman effect.
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The aim of this paper is to study the Raman light scattering on the basis of the two-band
model of superconductors [13–15], taking into account collective oscillations, polarization
corrections required because of the long-wavelength Coulomb interaction, and scattering of
electrons by non-magnetic impurities. The influence of impurity in the one-band case is
studied in [16].

2. Basic equations

The equilibrium problem is described by the two-band Hamiltonian [13, 14, 17], and the
order parameters (or energy gaps) of a two-band superconductor in the equilibrium state
satisfy the following system of equations:
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whereλnm = VnmNm, Nn and1n are the density of electron states on the Fermi surface for
one spin direction and the order parameter for thenth band, and theVnm are the interaction
constants (withn = m for intra-band interaction, andn 6= m for inter-band interaction).

Light scattering can be described by the differential cross-section in terms of the solid
angle d� and the frequency interval dν:

∂2σ

∂ν ∂�
= ωS

ωI
r2

0Sγγ (k, ν)

Sγγ (k, ν) = − 1

π
(1+ n(ν)) Imχγγ (k, ν).

(2)

Herer0 = e2/mc2 is Thompson’s radius,ωI andωS are the frequencies of the incident and
scattered light (we take ¯h = kB = 1), ν = ωI − ωS , n(ν) is the Bose–Einstein distribution
function, andχγγ is the Raman response function which differs from the usual density–
density response function for a given band through the vertexγn(p) defined as follows [4]:

γn(p) = m
∑
α,β

eSα
∂2εn(p)

∂pα ∂pβ
eIβ (3)

whereeI andeS are the polarization vectors of the incident and scattered light, andεn(p) is
the dispersion law for thenth band. In our case the valueχγγ describes the total contribution
of the two bands, and is obtained as a proportionality factor of the Raman fluctuations and
the valueHA = r0|AI ||AS | which, with the weightγn(p), plays the role of an external
perturbation:H(n)

int = γn(p)HA. (AI andAS are the vector potentials of the incident and
scattered light.)

δnγγ (k, ν) = 2
∑
p

∑
n=1,2

γn(p) δnp(k, ν) = −χγγ (k, ν)HA (4)

and in order to determineδnγγ the linear-in-HA correction to the zero-quasiparticle
distribution function must be calculated. For this purpose we make use of the method of
reference [18], which allows us to study the influence of fluctuational effects and impurity on
the Raman scattering in a rather simple form. In the terms of reference [2], this means that
we take into account the dependence of all Green functions (including vertex corrections)
on the impurity. Compared to reference [16], here we additionally consider the fluctuations
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of the scalar potential and order parameter phase, i.e. we take into account loop diagrams
with different numbers of superconducting vertices.

Generalizing the method described above to the two-band case [19], we derive a system
of equations for linearized Green’s functions integrated over the energy:

ik · vnG′n − ω+τ̂zG′n − ωG′nτ̂z + (−i1̂′n + ieϕ + iH(n)
int + iev ·A′τ̂z + i6′n)Gn(ω)

− Gn(ω+)(−i1̂′n + ieϕ + iH(n)
int + iev ·A′τ̂z + i6′n)

+ (−i1̂n + i6n(ω+))G′n −G′n(−i1̂n + i6n(ω)) = 0. (5)

Here,ω+ = ω + ω0, ω = (2n + 1)πT , ω0 = 2πnT , andvn is the electron velocity of
the nth cavity of the Fermi surface. The matrix structure of the Green functions and order
parameters is written as in [18]:
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(
α(n) −iβ(n)

iβ(n) −α(n)
)
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2
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n
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1

2τn
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where angle brackets denote averaging over the solid angle of momentump on the Fermi
surface.

The linearized Green functions satisfy the normalization condition

G′nGn(ω)+Gn(ω+)G′n = 0 (7)

which allows one to express non-diagonal corrections to the Green functionsF
(n)

1 andF (n)2

through diagonal ones,g(n)1 andg(n)2 . From (5) and (7) we obtain corrections that we shall
need later as follows:

g
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)
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ik · vn
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(8)

where

Wn = (Bn + 1/τn)
2+ (k · vn)2

and

Bn =
√
ω2+12

n +
√
(ω + ω0)2+12

n

and whereA′ and ϕ are the vector and scalar potentials arising in the superconductor
due to the external perturbationHA. The impurity, as in [18], is considered in the
Born approximation. τn is the electron relaxation time in thenth band, andτ−1

n =
2πNn|V |2nkp (V is the matrix element for electron–impurity scattering, andnkp is the
impurity concentration). Inter-band scattering is not considered, i.e. the intra-band relaxation
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time is assumed to be much less than the inter-band one. Also it is assumed that the order
parameters in both bands are isotropic, and that the attraction between electrons (both
intra- and inter-band) is constant. Electron–hole symmetry about the Fermi surface is
also assumed, and, therefore, electron density fluctuations are coupled with order parameter
phase fluctuations and are not coupled with the fluctuations of the order parameter amplitude.
Moreover, even in the case of electron–hole asymmetry, when the fluctuations of the phase
and amplitude of the order parameter are coupled [20], amplitude modes for small transfer
vectorsk do not contribute to the light scattering.

The distribution function for the Raman fluctuations in the approach linear inHA and
the scalar potentialϕ can be written as follows:

−δnγγ (k, iω0) =
{

2
∑
n=1,2

〈γnNn(HAγn + eϕ)〉 + iπT
∑
ω

∑
n=1,2

Nn〈γn(g(n)1 + g(n)2 )〉
}
. (9)

For γn = 1, HA = 0, andn = 1, equation (9) gives the well-known formula which
determines the variations of the particle density [21].

The first term in (9) describes the variation of the electron density associated with the
superconducting pair condensate, and the second one is due to quasiparticle fluctuations
(electron-like and hole-like). In (9) the following generalizations are made: two bands with
different weights of Raman fluctuations are taken into consideration, andeϕ is replaced
by eϕ + HAγn, because the termr0|AI ||AS |γn enters the single-particle Hamiltonian in a
similar way toeϕ.

The functionsg(n)1 + g(n)2 depend on the fluctuations of the order parameter phase, the
scalar potentialϕ, and the vector potentialA′. The latter need not be considered as shown
below. The values1′(n)1 −1′(n)2 andeϕ describe the deviation from the equilibrium theory
of the two-band model [13, 14] due to the interaction between electrons, which was not
taken into account in the self-consistent-field approach. They can be determined from a
system of three equations. Two of them are derived from the self-consistent condition. One
of them can be written as

1

λ11
(1′(1)1 −1′(1)2 )+ πT

∑
ω

β
(1)
+ + β(1)
α
(1)
+ − α(1)

〈g(1)1 + g(1)2 〉

+ λ12

λ11
πT

∑
ω

β
(2)
+ + β(2)
α
(2)
+ − α(2)

〈g(2)1 + g(2)2 〉 = 0 (10)

and the second can be obtained by swapping the band indices: 1↔ 2
The third equation is Poisson’s equation, which takes into account the change of the

electron density caused by light, and the two-band character of the system:

k2ϕ = −8πe
∑
n=1,2

Nn

[
eϕ + γ̄nHA + iπT

2

∑
ω

〈g(2)1 + g(2)2 〉
]
. (11)

The last term in (8) is proportional to the vector potentialA′ which, like the scalar one,
must be determined from Maxwell’s equations. However, due to the gauge invariance of
equations (5), a gauge condition can be selected which leaves only a transverse component
of A′. Then, sincek ·A′ = 0, the average of the term includingA′ over the solid angle
of p is zero (if the other parameters remain isotropic). Therefore, from now on we will
consider only the scalar potentialϕ, which is determined from Poisson’s equation. As to the
gauge invariance of the theory, note that the continuity equation results from the equation
for the Green’s functions if one takes into account (10) and (11).
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The value〈γn(g(n)1 +g(n)2 )〉 must be obtained in order to determine the valueδnγγ (k, ν).
It can easily be derived from equation (8), averaging it with the weightingγn. Substituting
the resulting average into (9), we have
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The fluctuational corrections in (12) can be obtained from the system (10), (11).

3. Fluctuational corrections

Substituting〈g(n)1 + g(n)2 〉 into (10) and (11) we derive a system of three inhomogeneous
equations to determine1′(1)1 −1′(1)2 ,1

′(2)
1 −1′(2)2 , andϕ:

Q
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Q
(n)

23 andQ(n)

33 differ from Q̃
(n)

23 and Q̃(n)

33 by the replacement〈γn/Wn〉 → 〈1/Wn〉. The
self-consistency conditions (1) for11 and12 were used while obtaining the elements of
the matrixQ.
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The right-hand side of (15) is

M1 = −2iHA

[
Q̃
(1)
23 +

λ12

λ11
Q̃
(2)
23

]
M2 = −2iHA

[
Q̃
(2)
23 +

λ21

λ22
Q̃
(1)
23

]
M3 = −2iHA(N1+N2)

−1[N1(γ 1+ Q̃(1)
33 )+N2(γ 2+ Q̃(2)

33 )].

(18)

It follows from (15) that

1
′(1)
1 −1′(1)2 =

Q1

Q
1
′(2)
1 −1′(2)2 =

Q2

Q
2ieϕ = Q3

Q
(19)

whereQ1,Q2, andQ3 can be obtained by replacing theith column inQ by the right-hand
side of equation (15).

4. The clean limit

We now consider zero temperature. Using the method of analytical continuation iω0 →
ν + iδ (δ → +0) [22], the expressions (13), (14), and (17) can be calculated. As a result,
for the clean limit (τ−1

n = 0) we obtain

Q̃
(n)

23 = −iν

〈
γnf

(n)

k

21n

〉

Q̃
(n)

33 = ν2

〈
γn(f
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Q
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412
n

f
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k

〉
.
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Here, thef (n)k are the well-known functions

f
(n)

k =
1

iβn

1√
1− (βn)2

ln(iβn +
√

1− (βn)2) (21)

whereβ2
n = (ν2− (k · v)2)/412

n.
The valuesQ(n)

23 andQ(n)

33 can be obtained replacingγn by 1 in (20). Now we know
all of the values that we need to calculateQ (see (16)). Its zeros determine the spectrum
of collective oscillations. Keeping the terms up to the order ofk2/(8πe2(N1 + N2)) and
k2v2/12, we have

Q = QLD

where

D = 1

41112(N1+N2)

(
k2ν2

8πe2
− 1

3
N1k

2v2
1 −

1

3
N2k

2v2
2

)
QL = f

(1)
k f

(2)
k ν2a

41112
− λ21f

(1)
k + λ12f

(2)
k

λ11λ22

a = 1−−λ21λ12

λ11λ22
.

ThusQ contains two factors. From the conditionD = 0 we obtain the frequency of
the plasma oscillations for the two-band model [23].
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Figure 1. The frequency of the collective mode due to oscillations of the relative phase of the
order parameters of the two bands versus the valueωL/211. The order parameters selected are
as follows: (a)11/12 = 0.9 and (b)11/12 = 0.25. The relation of the densities of states for
the two curves isN1/N2 = 0.8. The dashed line corresponds to the case where the frequency
coincides with Leggett’s frequency.

Whenν2/412
n � 1 the valuesf (1)k are equal to 1, and fromQ = 0 we have

ω2
L =

λ12(1+N1/N2) 41112

λ11λ22− λ21λ12
. (22)

Here the relationλ12/λ21 = N2/N1 was used.ωL is the frequency of the oscillations
caused by the fluctuations of the difference of the electron densities of the two bands, which
was obtained for the first time by Leggett [15].

The valueQ is of the order ofk2; therefore, the valuesQ1,Q2, andQ3 (formula (19))
which determine the fluctuational contribution must be expanded up to the same order. In
this manner we obtain the fluctuational contribution, and substituting it into (12) and then
using the definition ofχγγ , equation (4), we obtain

χγγ (k→ 0, ν) =
∑
n=1,2

χnnγ γ (k→ 0, ν)+ χ12
γ γ (k→ 0, ν) (23)

where

χnnγ γ (k→ 0, ν) = 2Nn

(
〈f (n)k γ 2

n 〉 −
〈f (n)k γn〉2
〈f (n)k 〉

)

χ12
γ γ (k→ 0, ν) = −2N1λ12

λ11λ22

1

QL

(
〈f (1)k γ1〉

√√√√ 〈f (2)k 〉
〈f (1)k 〉

− 〈f (2)k γ2〉
√√√√ 〈f (1)k 〉
〈f (2)k 〉

)
.

Thus, the fluctuational contribution leads to screening of the Raman scattering [4] and
to the appearance of an additional term independent ofk caused by inter-band transitions
of Cooper pairs. The next terms in (23) not taken into account are of the order of

k2

8πe2(N1+N2)

k2v2

12
D−1� 1.
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Figure 2. The fluctuational contribution to the Raman light scattering caused by inter-band
transitions of Cooper pairs. The interaction constants are:λ11 = 0.3, λ22 = 0.05, λ12 = 0.01,
and λ21 = 0.008. The relation of the densities of states isN1/N2 = 0.8. This gives
11/12 = 0.25.

The first term in (23) is an additive contribution from the two bands. Imχnnγ γ (k, ν) is non-
zero only at frequenciesν > 21n. Let us write the valueγn as a sum of isotropic and
anisotropic parts:γn = γ 0

n + δγn(p). At γn = γ 0
n the oscillations of the electron density

are screened completely, and Imχγγ (k→ 0, ν) = 0. This satisfies the particle number
conservation law [9]. Thus at constantγn(p) and fork → 0, only inter-band interactions
of Cooper pairs contribute to the light scattering. The value Imχ12

γ γ (k→ 0, ν) differs from
zero in the case whereγ1 andγ2 are constant but not equal. For this case we have

Imχ12
γ γ (k→ 0, ν) = 2λ12λ21

(λ11λ22)2
(γ 0

1 − γ 0
2 )

2|QL|−2[N1 Im f
(2)
k |f (1)k |2+N2 Im f

(1)
k |f (2)k |2]

+ 2N1λ12

(λ11λ22)2
(γ 0

1 − γ 0
2 )

2δ(ν − ω̃)πPL. (24)

Here ω̃ is determined as a root of the equationQL = 0, andPL is the pole’s weight:

P−1
L =

dQL

dν

∣∣∣∣
ν=ω̃

.

For ν/211 � 1 andν/212 � 1 the frequencỹω coincides with Leggett’s frequency
[15]: ω̃ = ωL.

The dependence of̃ω on the parameters of the two-band model is presented in figure 1.
The superconducting order parameters11 and12 have been calculated self-consistently
using equations (1). It is evident from the figure thatω̃ coincides withωL only at small
frequenciesν/211 6 0, 5. However, over the whole interval of frequencies where there is
a solution ofQL = 0, it is less than the energy gap:̃ω/211 < 1.

The intensity of the Raman scattering calculated using equation (24) is presented in
figures 2 and 3. The sharp peaks on the figures correspond to the frequencyω̃. A similar
peak in the Raman intensity was predicted by Wu and Griffin [24] for a model of a layered
superconductor with tunnelling of Cooper pairs between layers. Continuum scattering at
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Figure 3. The same plot as in figure 2, but for11/12 = 0.8 (λ11 = 0.045, λ22 = 0.055, λ12 =
0.08, λ21 = 0.066, andN1/N2 = 0.4).

ν > 211 corresponds to the first term in (24). It essentially depends on the relations of the
density of statesN1/N2 and the order parameters11/12 of the two bands. It can be seen
that if 11 strongly differs from12, then the continuum scattering intensity has only one
maximum, close to the lowest of the two gaps. In the case where11/12 ' 1, there are
two maxima in the plot.

In reference [6] the electron Raman scattering for YBa2Cu4O8 was found to depend on
the light polarization. At different polarizations, the scattering intensity decreases below
different frequencies, which was interpreted by the authors as implying the existence of two
different energy gaps. This conclusion was confirmed by the results from phonon Raman
scattering. The proposed two-gap interpretation [6] corresponds to two contributions ofχnnγ γ
(formula (23)): at different polarizations, different termsχnnγ γ are seen.

The absence of a clear threshold is explained by the authors of [6] in terms of an
anisotropy of the order parameters. Note that, although our calculations are for the isotropic
case, the results forχnnγ γ can be applied for anisotropic gaps. The contribution to the
Raman effect caused by the inter-band transitions of Cooper pairs (χ12

γ γ ) for anisotropic
order parameters has a more complicated form. However, atγ 0

1 6= γ 0
2 , as well as in the

isotropic case, this contribution exists for any polarization, and begins from the lowest
energy gap. The data of reference [6] do not support this. It is possible that the two-band
nature observed in [6] is unconventional, or that the contribution of Imχ12

γ γ is not observed
due toλ12 and λ21 being small. Equation (1) can have a solution with12/11 ' 3 (as
in [6]) at smallλ12 with one of the inter-band constants equal to zero (eitherλ11 or λ22).
This is the case where superconductivity in one of the bands exists only due to transitions
of Cooper pairs from another band. In this caseω̃ = 0, and noδ-like peak is seen,
as was also the case in [6]. Note that in reference [25] the following estimates for the
order parameters of yttrium ceramics (supposed therein to be two-band superconductors)
were used:λ12 � λ21, λ22 ' 0, λ21 ' 0, 4, λ11 ' 2, 5. So, comparing our results to the



3830 L Z Kon et al

experimental data of [6], we can conclude that if the superconductivity in yttrium ceramics
has a traditional two-band nature [6], then in one of the bands it is induced.

5. The impure case

Similarly to in the clean limit, for the case of a superconductor containing non-magnetic
impurities it is easy to obtain the response functionχ̃γ γ (k→ 0, ν) as a sum of two terms:

χ̃γ γ (k→ 0, ν) =
∑
n=1,2

χ̃nnγ γ (k→ 0, ν)+ χ̃12
γ γ (k→ 0, ν). (25)

Here

χ̃nnγ γ (k→ 0, iω0) = 2Nn(γ 2
n − γ 2

n)πT
∑
ω

ω0(α
(n) − α(n)+ )

Bn(Bn + τ−1
n )

(26)

χ̃12
γ γ (k→ 0, ν) = 2

∑
n=1,2

Nn

{
(1+Q(n)

33 )γ
2
n

+ 1

HA
eϕ(γ n + Q̃(n)

33 )−
i

2HA
Q̃
(n)

23 (1
′(n)
1 −1′(n)2 )

}
. (27)

Formulae (26) and (27) are obtained without restrictions on the valuesντn and1nτn.
From (26) in the case of one band the result of reference [16] for Imχγγ follows. In the
two-band model, from (26) we have an additional contribution, which, for instance, is in
the case of normal metal

Im χ̃nnγ γ =
∑
n=1,2

Nn(γ 2
n − γ 2

n)
2ν

τn(ν2+ τ−2
n )

.

To calculateχ12
γ γ , taking the limitk · v = 0 is not appropriate, and we have to keep

terms up to the order ofk2v2. To simplify the problem we consider the case of large 1/τn,
i.e. whereτ−1

n � 1 and τ−1
n � ν. Then, for k2v2 � 1 the small parameterk2v2τ/1

appears, and all values can be expanded in terms of this parameter. The fluctuational
contribution in the dirty limit proved to be equal to that of the clean limit:

Im χ̃12(k→ 0, ν) = Imχ12(k→ 0, ν) (28)

and can be determined from (24). The frequency of the collective modeωL is given by
(22). For the plasma frequency we have

ω2
pl =

8π2e2

3
(N1v

2
1τ111+N2v

2
2τ212). (29)

Plasma oscillations influence the Raman scattering only in terms of the order of
k2v2τ/1� 1.

The inter-band electron–impurity scattering times (not considered in the present work)
are assumed to satisfy the inequalityτ−1

12 � 1. In the opposite limit, it is necessary to take
them into account, and the problem is reduced to the one-band model with renormalized
parameters [26, 27].

6. Conclusion

So, we have considered electron Raman scattering in two-band superconductors, taking
into account collective oscillations, Coulomb screening, and scattering by the non-magnetic
impurities.
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We have shown that for a clean superconductor and for a superconductor with non-
magnetic impurities, the intensity of the Raman scattering contains terms that are diagonal
and terms that are non-diagonal in the band index. The diagonal ones describe additive
contributions from the two energy bands. Fluctuational effects screen these terms in the
clean limit as well as in the dirty limit. If the wave vector transferred to the bulk material
by the light is small, and the verticesγn are independent of the solid angle ofp, then the
electron density oscillations are screened completely, and the diagonal terms are equal to
zero. Also, fluctuational effects cause a non-diagonal contribution to the Raman scattering.
These terms are possible for any polarization; they are not connected with fluctuations of
the electron density, and hence are not screened. The non-diagonal terms contain a sharp
peak inside the lowest gap and a continuum above it, whose shape depends on the choice
of parameters of the two-band model. However, in all cases the lowest gap serves as the
threshold of a non-diagonal continuum spectrum. Experimentally, this means that the lowest
gap must be active for any light polarization.
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